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Abstract- The purpose of this paper is to evaluate 
the physical and mental stress based on the physio- 
logical index, and a new evaluation method of heart 
rate variability is proposed. This method combines 
the wavelet transform w^ith a recurrent neural net- 
work. The features of the proposed method are as 
follows: 1. The wavelet transform is utilized for 
the feature extraction so that the local change of 
heart rate variability in the time-frequency domain 
can be extracted. 2. In order to learn and evalu- 
ate the different patterns of heart rate variability 
caused by individual variations, body conditions, 
circadian rhythms and so on, a new^ recurrent neu- 
ral netw^ork v^^hich incorporates a hidden Markov 
Model is used. In the experiments, a mental w^ork- 
load was given to five subjects, and the subjective 
rating scores of their mental stress were evaluated 
using heart rate variability. It w^as confirmed from 
the experiments that the proposed method could 
achieve high learning/evaluating performances. 
Keywords- Heart rate variability, Mental stress. 
Wavelet transform. Recurrent neural network. 
Hidden Markov model. 

I    INTRODUCTION 
An electrocardiogram (ECG) is available for a basic 

physiological index which evaluates the change in patient's 
body condition and monitors physical and mental stress in 
his/her daily activities. The heart rate is complicated since 
it is affected by various factors such as a sinus node for a 
pacemaker, autononiic nerves, the endocrine system and so 
on. It is expected that the changes of these factors can be 
evaluated based on the analysis of Heart Rate Variability 
(HRV). In this paper, we propose a new evaluation method 
of HRV. 

HRV includes many frequency components, and vari- 
ous information can be obtained from them through the 
frequency domain analysis [1], [2]. In the report of Sayers, 
which is the pioneer research in this area, three peaks exist 
on the power spectrum of HRV. The lower frequency com- 
ponent (0.02 —0.06[Hz]) is influenced by thermoregulation, 
and the middle frequency component (0.07 — 0.14[Hz]) is 
influenced by blood pressure regulation, and the high fre- 
quency component (0.15 — 0.5()[Hz]) is influenced by res- 
piration respectively. However, if the power spectrum of 
HRV is calculated using fast Fourier transform, it expresses 
rough information in a fixed period of the time series signal, 
and the dynamic changes of the autononiic nerve activity 
cannot be expressed. It is difficult to analyze the non- 
stationary pattern of HRV using this method during the 

exercise. To overcome this difficulty. The wavelet trans- 
form (WT), which extracts local features of HRV in the 
time-frequency domain, is proposed [3]. 

The changes in the spectrum pattern from physical and 
mental stress are different among individuals. The sub- 
jective feeling of the subjects is also different. These are 
the problems of the spectrum analysis of HRV. Most pre- 
vious studies defined specified frequency ranges such as 
the low frequency component (LF) and the high frequency 
component (HF) on the power spectrum of HRV, and ex- 
tracted an integrated or maximum value of the power in 
each range. However, this method is not always applicable 
because the ranges, scales and speeds of the changes in the 
spectrum are affected by various factors such as individual 
variations, body conditions, circadian rhythms and so on. 

On the other hand, some approaches using a neural net- 
work have been attempted. These approaches have real- 
ized the aflaptive signal processing of the ECG. Miiiami et 
al. combined the feature extraction by Fourier transform 
and a back-propagation neural network (BPN) [4], and de- 
tected the tachyarrhythmia in real-time. Fahoum et al. 
combined the WT and an R,BF neural network (R,BFN), 
in order to detect life-threatening cardiac arrhythmias [5]. 
The purpose of these reports was to detect the abnormal 
waveform on the ECG. The fact that HRV caused by phys- 
ical and mental stress, etc. was not stated. Also, there is a 
problem in that large numbers of training data and learn- 
ing iterations are needed, if the BPN is utilized for the 
processing of a complicated signal. 

Authors have developed a new statistical neural net- 
work called Log-Linearized Gaussian Mixture Network 
(LLGMN) [6], [7]. This network is structured based on 
a Gaussian mixture model and a log-linear model, and can 
achieve higher performance in discriminating for electroen- 
cephalograms and electromyograms than other neural net- 
works. The LLGMN can learn the changes of the signal 
patterns due to the differences among individuals, differ- 
ent locations of the electrodes, time variations caused by 
fatigue or sweat, and so on. Authors also proposed the 
Recurrent Log-Linearized Gaussian Mixture Network (R- 
LLGMN) [8]. The R,-LLGMN uses the recurrent connec- 
tion a<:lded to the units of the LLGMN in order to discrim- 
inate a time sequence of the signals with high accuracy. 
The R-LLGMN includes a hidden Markov Model (HMM) 
[9] in its structure and can modify the weight coefficients 
by the back-propagation through time (BPTT) algorithm 
[10]. The weight coefficients have no statistical constraints 
like the HMM (e. g., 1 > transition probability > 0, stan- 
dard deviation > 0), so that the R-LLGMN can realize 
a higher learning ability than the HMM for even a small 
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Fig.l Structure of the signal processing. 

number of training data. 
This paper proposes a new evaluation method of HRV, 

which can evaluate the physical and mental stress based 
on the physiological index. In the proposed method, the 
local changes of HRV in the time-frequency domain are ex- 
tracted by the WT, and they are used for the input data 
of the R,-LLGMN. The R-LLGMN incorporates the HMM 
and can evaluate HRV patterns, which are affected by var- 
ious factors such as individual variations, body conditions, 
circadian rhytlims and so on. 

II    EVALUATION METHOD OF HRV 
Figure 1 shows the structure of the signal processing, 

which consists of the measuring part, the feature extrac- 
tion part and the evaluation part. The measuring part 
measures the HRV time series based on the R-R, intervals, 
and the feature extraction part extracts the feature pat- 
terns of this time series in the time-frequency domain. The 
evaluation part learns and evaluates the feature pattern us- 
ing the R.-LLGMN. The details of each part are explained 
in the following sections. 

A     Measuring ■part 

The EGG is monitored with l.()[kHz] sampling fre- 
quency (Polygraph 360, NEC San-ei Instruments, Ltd.) 
and the HRV time series is sampled based on the R-R, 
intervals. Then, it is smoothed according to the 3rd or- 
der spline curve fitting and re-sampled as hp{i)\msec\ with 
2.()[Hz] sampling frequency, where i indicates the «-tli sam- 
pled data. 

B    Feature extraction pari 

This part extracts the feature patterns from hp{i). 
First, the mean values hpm{i) {i > It) and standard devi- 
ations hpgt(i{i) are calculated every /j [sec] as the time do- 
main information. Then, multiple frequency components 
are extracted using the WT as the frequency domain in- 
formation [3]. Here, let us consider a continuous WT of 
f{t). This transformation is defined as 

{W^f){ai,b) Jfmi 
ai 

)dt, (1) 

where ai is a scale parameter which selects the extracting 
frequency range, and 6 is a shift parameter which selects 
the extracting time period. ip{t) indicates a mother wavelet 
(Gabor function) defined as 

Ht) 
2yjTTa 

exp[ 
4a 

+ «woi]. (2) 

where the parameter WQ is settled as WQ = 27r/o,/o = 0.5, 
and the parameter a, which regulates the time width of 
the Gabor function, is calculated as 

a = 
UJI log 2' (3) 

The scale parameter a;  in (1) is calculated as a; 
(/ = 1, 2, • • •, L — 1). ao is defined as 

ao = exp[ 
logujmax - loga;„ 

L-1 (4) 

where iv^ax = t^o, (^m.in  = ^Trfmimfmin = 0.01 are the 
extracting maximum and minimum angular frequencies. 

Using the above equations (1) ~ (4), the power of WT 
\{W,l,, f){ai,i)\ is calculated. The frequency components, 
which are calculated by the scale parameters ao ~ OL-I-, 

are divided into S equal ranges and averaged within each 
range. They are filtered out through the 4tli order but- 
terworth filter (cut-off = C/), and the smoothed signals 
h'Pw,si'i) (s = I7 2, • • •, S) are extracted. 

Finally, the feature patterns in the time-frequency do- 
main hp{i) = [hpm{i),hpstd{i), hpu,,i{i), hp^^2{'i), • • •, 
h'Pw,s{n)\^ are normalized by the mean values during the 
rest, and re-sampled as x[n) = [a;i(n),a;2(n), a;3(n), • • •, 
^■D{I'I)\^ ^ ^^ every /„ [sec], where n indicates the n-th 
feature pattern. 
C    Evaluation pari 

The R-LLGMN [8] is used in this part in order to cope 
with non-linear and non-stationary characteristics of the 
HRV patterns caused by individual variations, body con- 
ditions, circadian rhythms and so on. The R-LLGMN in- 
cludes the HMM [9] in its structure, and can realize higher 
learning ability than the HMM for even a small number 
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of training data because the weight coefRcients of the R- 
LLGMN have no constraints such as the statistical prop- 
erties of the HMM (e. g., 1 > transition probability > 0, 
standard deviation > 0). The R-LLGMN receives the fea- 
ture patterns x{n) and outputs the a posteriori prohshility 
for the class, which corresponds to the state of physical and 
mental stress. 

Before evaluation of the input patterns, the R-LLGMN 
must be learned. The BPTT algorithm [10] is used be- 
cause of the recurrent connections. The time history of 
the input pattern is considered from the previous iV., sam- 
ples. Moreover the terminal attractor [6] is incorporated 
with the BPTT in order to regulate the convergence time 
of the learning process. 

Ill    EXPERIMENTS 
The experiments were carried out in order to examine 

the ability of the proposed method. The mental workload, 
as an example of the physical and mental stress, was given 
to the subjects, and the subjective rating scores of the 
mental stress were estimated using the HRV patterns. 

A    Experimental conditions 

The experiments were performed for five subjects 
(male/female=4/l, age = 31.6 ± 5.5). They were seated 
at a desk, and a color display (15 inch, HMD-AlOl, Sony 
Corp.) was set at a distance of 6()[cm] apart from their 
eyes. Integer numerals were displayed for 2.()[sec] in the 
center of the display, and the subjects were asked to input 
the same number after fading out the number. The font 
size of the displayed numbers was 54[point], and a ten-key 
paA of the keyboard was used for the input. During the 
experiments, the EGG signal was measured based on the 
bipolar derivation method, and there was no indication of 
the subject's respiration. 

The subjects were asked to take a rest for 5.()[niin]. 
Then, the sessions 1 ~ 9 were executed. Each session 
consisted of the input task (2.()[min]) and the subjective 
evaluation (about 3().()[sec]). The digit of displayed num- 
bers was equal to the session number, and the number was 
displayed for 2.()[sec]. The subjective evaluation of the 
mental stress was expressed in five levels, where Level 5 
indicated the most stressful conditions. Each subject car- 
ried out two sets of this time schedule. The pattern which 
was extracted in the first set was used as the learning data, 
and one pattern in the second set was used as the evalua- 
tion data. 

The parameters in the feature extraction part were set- 
tled as /t = 5.0[sec], /„ = 5.0[sec], Cf = 0.()05[Hz], 5 = 8, 
D = 10. The scale parameter of the WT, which selects the 
extracting frequency range, was L — 160, where I = 159, 
I = 131, I = 0 corresponded to 0.01[Hz], 0.25[Hz], 0.5[Hz] 
respectively. In the evaluation part, the number of out- 
put units corresponded to the one of the stress levels. The 
number of learning samples was A'^ = 180(20 in each ses- 
sion) . The time history of the input pattern was considered 
from the previous Ng — 5 samples in the BPTT. 

B    Experimental results 

Fig.2 An example of the evaluation results 

Figure 2 shows an example of the experimental result, 
which shows: digits of the displayed numbers (session num- 
bers), the HRV signal, the WT of the HRV signal, input 
signals of the R.-LLGMN, subjective rating scores, mean 
values of the estimated scores, standard deviations of the 
estimated scores and rates of correct answer. The WT of 
the HRV signal is darkened as its power increases. The 
mean values and the standard deviations of the estimated 
scores are calculated for 10 kinds of initial weight coeffi- 
cients, which are randomly chosen. 

It can be seen that the R-LLGMN estimated the grad- 
ual increase of the mental stress successfully, though the 
estimated scores of the R-LLGMN increased earlier than 
the subjective rating scores. The standard deviations of 
the estimated scores were considerably small. The corre- 
lation coefficient between subjective rating scores and the 
estimated scores was 0.89. The estimation accuracy of the 
R-LLGMN remarkably decreased when digits of the dis- 
played number was 9. In this case, the difficulty of the 
task seemed to saturate the ability of the subject. 

Next, the evaluation results for five subjects are shown 
in Table 1. The results of Subject E corresponds to the Fig. 
2. The table shows the subjective rating scores, estimated 
scores and the rates of correct answers for the sessions 
1 ~ 9. The mean values and the standard deviations of 
the estimated scores were calculated for 10 kinds of initial 
weight coefficients. 
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Table 1 Experimental results for five subjects. 

We see from the table that the changes in the subjective 
rating score and the rate of correct answer were different 
among individuals. Under such situations, the R-LLGMN 
estimated the gradual increase of the mental stress suc- 
cessfully. The correlation coefficients between subjective 
rating scores and the estimated scores were 0.92 ~ 0.89. 
The evaluation performance of Subject D decreased like 
Fig. 2 (Subject E) during Session 9. 

IV    CONCLUSION 
This paper proposed a new evaluation method of heart 

rate variability in order to evaluate the physical and men- 
tal stress based on the physiological index. In this method, 
the feature patterns of HRV were extracted by using the 
WT, and the R-LLGMN learned and evaluated these pat- 
terns. In the experiments, the subjective rating scores of 
the subject's mental stress were evaluated with high accu- 
racy. 

In the future, we would like to develop a monitoring 
system, which incorporates the proposed method, in order 
to evaluate HRV patterns in daily life. 
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